Photopigment transmittance imaging of the primate photoreceptor mosaic.
نویسندگان
چکیده
We introduce a new technique for classifying many photoreceptors simultaneously in fresh, excised primate retina on the basis of their absorptance spectra. Primate retina is removed from the pigment epithelium and illuminated under a microscope from the same direction as in the intact eye. To facilitate the guiding of light into the receptor outer segments, the optical axes of the photoreceptors are oriented parallel to the optical axis of the microscope. Photoreceptor outer-segment tips are imaged on a charge-coupled device array, which provides radiometric measurements of the light passing through each photoreceptor. These images are acquired sequentially at three wavelengths chosen to maximize the absorptance differences among the three cone photopigments. After the photopigment is bleached, a second set of three images is acquired. The ratios of the images before and after bleaching at each wavelength are photopigment transmittance maps of the retina. These are combined into a single trichromatic image showing the distribution of photopigment if the retina could be viewed directly in white light without bleaching. We have found patches of receptors in peripheral macaque retina where the measured absorptance at the wavelength of maximum absorptance is consistent with the predicted axial absorptance of th photopigment. The cones in these patches cluster into two groups corresponding to the middle wavelength-sensitive (n = 53, mean absorptance = 0.28) and the long wavelength-sensitive (n = 63, mean absorptance = 0.30) cones. The mean absorptances of 273 macaque and 183 human rods were 0.51 and 0.41, respectively.
منابع مشابه
In Vivo Two-Photon Fluorescence Kinetics of Primate Rods and Cones
PURPOSE The retinoid cycle maintains vision by regenerating bleached visual pigment through metabolic events, the kinetics of which have been difficult to characterize in vivo. Two-photon fluorescence excitation has been used previously to track autofluorescence directly from retinoids and pyridines in the visual cycle in mouse and frog retinas, but the mechanisms of the retinoid cycle are not ...
متن کاملCharacterizing the Human Cone Photoreceptor Mosaic via Dynamic Photopigment Densitometry
Densitometry is a powerful tool for the biophysical assessment of the retina. Until recently, this was restricted to bulk spatial scales in living humans. The application of adaptive optics (AO) to the conventional fundus camera and scanning laser ophthalmoscope (SLO) has begun to translate these studies to cellular scales. Here, we employ an AOSLO to perform dynamic photopigment densitometry i...
متن کاملTime : 12 : 00 PM – 1 : 45 PM In vivo two - photon fluorescence kinetics of primate rods and cones during light and dark adaptation
Program Number: 5968 Poster Board Number: A0139 Presentation Time: 12:00 PM–1:45 PM In vivo two-photon fluorescence kinetics of primate rods and cones during light and dark adaptation Robin Sharma1, 2, Christina Schwarz2, Grazyna Palczewska3, Krzysztof Palczewski4, David R. Williams1, 2, Jennifer J. Hunter5, 2. 1The Institute of Optics, University of Rochester, Rochester, NY; 2Center for Visual...
متن کاملInherited multifocal RPE-diseases: mechanisms for local dysfunction in global retinoid cycle gene defects
Alterations of retinoid cycle genes are known to cause retinal diseases characterized by focal white dot fundus lesions. Fundus appearances reveal circumscribed RPE-changes, although generalized metabolic defects and global functional abnormalities are present. As a possible explanation, topographic inhomogeneities of the human photoreceptor mosaic and the role of a cone specific visual cycle w...
متن کاملNoninvasive imaging of the thirteen-lined ground squirrel photoreceptor mosaic.
Ground squirrels are an increasingly important model for studying visual processing, retinal circuitry, and cone photoreceptor function. Here, we demonstrate that the photoreceptor mosaic can be longitudinally imaged noninvasively in the 13-lined ground squirrel (Ictidomys tridecemlineatus) using confocal and nonconfocal split-detection adaptive optics scanning ophthalmoscopy using 790 nm light...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 16 7 شماره
صفحات -
تاریخ انتشار 1996